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Abstract—Building stable structures is important for a variety
of tasks, such as construction and warehouse organization.
Utilizing robots can improve the efficiency at which these tasks
are completed. In order for this to become possible, robots must
be taught to understand properties of stability and how to apply
them towards building stable structures. This course project
investigates utilizing block face surface area as an indicator of
stability. A keypoint detector is trained to estimate the boundaries
of each of the top faces of a collection of blocks within a
scene. These detections are used to estimate their surface areas.
Experiments evaluate the accuracy of the keypoint detector and
further analyze the ability for these detections to estimate to
determine an order, based on surface area, in which to stack the
blocks.

I. INTRODUCTION

Building stable structures is important to a wide variety of
applications, including compact storage in warehouses, organi-
zation of items in a refrigerator, and most notably construction.
While stacking objects in domestic environments is relatively
trivial for humans, stacking in warehouses and in construction
for long periods of time can be strenuous for humans. Thus,
developing the ability for robots to understand the properties
of and build stable structures is appealing. A robot’s ability
to understand and apply concepts of structural stability has
the potential to augment and increase the efficiency of human
efforts.

Two sub-tasks, both related to stability, of the block stacking
task are: understanding the order of which to stack a set of
blocks, and ensuring that two subsequent blocks are placed in
a stable manner relative to each other. When stacking objects,
humans primarily rely on visual cues to ensure stability. For
the former sub-task, ordering, size and shape are taken into
account: typically, objects with flat faces that have relatively
large surface areas are placed at the bottom, and more irregu-
lar/smaller/curved objects are placed closer to the top. For the
latter sub-task, object alignment, the intersection between the
area of the faces stacked on top of each other is maximized.

These and other intuitions about object stacking that humans
have developed provide useful insights for the development
of stacking capabilities in robots. In my course project, I
will focus on investigating the former task: investigating the
correlation between object face surface area and structure
stability. More concretely, based on intuition and results from
prior work, I hypothesize that the surface area of the largest
face on each object can provide a useful comparator for object
ordering.

The primary contribution of this project is a keypoint
detection model based on the YOLOv8 model, where the
keypoints correspond to the corners/points of interest on the

face of a given 3D object, in this case cubes. These keypoints
can be used to estimate the surface area of a face of the cube.

The model is able to predict the expected keypoints in
an image observation containing several cubes reasonably
well with a small amount of training data. In addition to
analyzing the quality of the predictions given by the model,
my experiments evaluate the ability to predict a cube’s face
surface area from the predicted keypoints and further generate
a stable order of the cubes based on surface area. The experi-
mental results show that while keypoint detection is reasonably
accurate, the ability for these detections to accurately estimate
the surface areas of cube faces and generate a stable stacking
order based on this is not consistent. Further work is needed
to understand how size can more accurately be perceived from
an image.

II. LITERATURE REVIEW

Prior work relevant to this project can be organized into two
categories: stability prediction/intuition and stacking policy
formulation.

A. Stability Prediction/Intuition

[2] develop an algorithm for creating a stable vertical stack
using 6 irregularly shaped stones. Their approach utilizes a
physics simulator to determine the next best object to place
on top of the existing stack, along with its optimal pose. This
work formalizes intuitions about stability by noting the points
of contact between two stones, the location of an object’s
center of mass, and the support polygon formed between
two successive stones in the stack when considering favorable
stacking poses. Similarly, in my project, I formalize intuition
regarding to block face surface area as it relates to stability.

[3] contributes the ShapeStacks dataset, a large set of 3D
objects with varying shapes and sizes, along with numerous
images of stacks that are labeled to reflect their structure
and stability. More specifically, two stability violations are
annotated: violation of the center of mass criterion, which
depends on how objects are positioned relative to others in
the stack and notates when the overall center of mass of the
stack becomes unstable, and violation of the planar surface
criterion, which discourages the placement of blocks on top of
a curved surface. These violations are used to train a stability
predictor, which provides intuition regarding a stack’s stability.
Further, as shown in the paper, the insights gained from the
stability prediction model allow for an understanding of the
stackability of an object. This provides a metric by which a
given set of blocks can be ordered, which aids in stacking.

Figure 6 in the ShapeStacks paper [3], referenced in Figure
1 above, shows a positive correlation between the stackability



Fig. 1. Figure from ShapeStacks paper showing correlation between projected
surface area on the x-y plane and the stackability of various objects

score of a block and the size of its projected surface area
for objects with numerous stackable faces, such as cubes and
cylinders, and negative or no correlation between these prop-
erties for objects with low stackability scores. This suggests
the benefits of learning model to predict object face surface
areas for the block stacking task.

The data collection and algorithm formulation of the afore-
mentioned works serve as inspiration and a foundation for my
own approach.

B. Stacking Policy Formulation

Two works from DeepMind [4], [1] explore developing
policies to enable robot arms to stack a set of objects.

The aim of [4] is to explore the robotic stacking task using
a custom set of non-trivial block shapes. This is done in order
to enable the robot to manipulate a variety of shapes and
understand their relations in regards to stacking. Two tasks
are explored: skill mastery, focused on enabling the robot
to master 5 specific stacking tasks, and skill generalization,
focused on creating a general model to enable the robot to
stack a variety of object sets. An imitation learning-based re-
inforcement learning policy is trained to teach the manipulator
block-stacking skills.

[1] is a more recent work from DeepMind that focuses
on creating a single transformer model that is capable of
performing a wide variety of tasks. The model is condi-
tioned on images of the end state. RoboCat can learn new
tasks/generalize to new robots with few demonstrations, and
the experiments section shows its ability to perform stacking
tasks, both in simulation and in the real-world.

My project is primarily focused on visual-based intuition
about structure stability and formulating a block stacking order
based on these intuitions, whereas the former papers focus
more heavily on teaching stacking skills to a robot manipulator
through reinforcement and demonstration.

III. TASK DESCRIPTION

In a given block stacking task, an agent will be given a set
of n blocks of varying shapes and sizes. The agent’s goal is to
build the tallest structure as possible without collapse. Like in
prior work, only single-stranded [3] stacks will be considered.

Each stacking scenario contains 5 differently-sized cubes.
The number and variety of blocks can be increased; the
extension will be described in Section VIII.

A separate environment in robosuite based off of the
existing stack environment is created for this task. This

custom-designed robosuite environment allows an arbitrary
number/variety of blocks to appear (as many as allowed
given the constraints of the table size) and utilizes a custom
placement initializer to allow for placing the blocks in various
scenarios, mainly for data collection purposes.

At the beginning of each stacking task, the five blocks are
placed in a line on the table. During intermediate states of the
task, part of the blocks will be in their initial positions, and
the rest will be on the block stack.

IV. DATA COLLECTION

Fig. 2. Example of an intermediate state of the robosuite environment for
this task

I collected data within the robosuite [6] simulation environ-
ment. To encourage the model to understand both initial and
intermediate states, described in Section III, I collected image
observations of both scenarios. An example of an initial state
of the workspace is shown in Figure 3, and an intermediate
state is shown in Figure 2.

To achieve this, I created a custom placement initializer
within my robosuite environment, which chooses a random
number of blocks out of the five to form a stack with and
places the remainder of the objects on the table as they would
appear in the initial state of the workspace. Given this random
number of blocks to stack, n, the placement initializer will
determine the n cubes with the largest faces. These cubes will
be stacked in order of their face size, which is the desired
order for the robot to stack them in.

After the scenario is generated, the robot arm will move to
a position where the majority of the workspace state can be
observed. Image observations from the eye in hand camera
are collected.

I collected data of 96 different scenarios, each with a
corresponding image observation. In order to use this data to
train my keypoint detector, the observations are labeled with
the desired keypoints. This is described further in Section V.

I considered using the ShapeStacks dataset for model train-
ing. However, the ShapeStacks project was focused on learning
physical intuition about stack stability and did not utilize a
robot. For teaching robots block-stacking intuition, observa-
tions from the robot’s point of view would be of higher quality



than those from a global frame of view. An interesting point
of future work would be to investigate how the observation
point of view impacts the robot’s understanding of objects in
the scene and, further, its ability to stack these objects in a
stable manner.

V. TECHNICAL APPROACH

The overall algorithm is as follows:
1) Collect image observation of the workspace
2) Utilize keypoint detector to identify the corners of a face

for each one of the cubes
3) Utilize keypoint predictions to estimate the area and

center of each detected block face

A. Keypoint Detector

Given an image observation of a set containing a number
of cube-shaped blocks, a keypoint detector is used to estimate
the corners of the face of the cube that is facing upward in
relation to the table.

For this task, a pre-trained YOLOv8 pose model is fine-
tuned on the dataset I collected within robosuite. For model
training, each cube within an image observation is annotated
with a bounding box to identify its class and a set of four
keypoints to identify the four corners of the upward-facing
face.

B. Alternative Surface Area Prediction Model Approaches

Prior to using a keypoint detection model, I considered a few
other approaches. The first was segmentation. I first considered
utilizing the segmentation renderings provided by robosuite,
but soon discovered that these would only be capable of
providing cube segmentations per instance and each face of
the cube may not be easily distinguishable from the others.
Similarly, I considered training a model which would learn a
segmentation mask of a cube face, which can then be used
to estimate the face’s area. The second approach I considered
was training a model to directly estimate the areas/positions
of cubes in an image. However, this method may require
significant data collection in order to enable the model to
generalize to a variety of cube sizes and rotations. Finally,
I considered using CenterNet [5] to estimate the centers of
each of the top-facing cube faces. CenterNet uses keypoint
estimation to estimate the object’s center. Using this keypoint,
CenterNet can then estimate the size of the object. However, I
hypothesized that using keypoint estimation to directly predict
four corners of a cube face is better tailored to this surface-area
based block ordering task.

C. Estimating Surface Area from Keypoint Predictions

Using the inferred keypoints, the cube face’s surface area
can be estimated by determining the length of the edges
formed by successive keypoints, then squaring this edge
length. The four edge lengths of the polygon are averaged to
give an estimation of the square’s side length, and the surface
area is estimated by squaring this value.

Figure 3 shows keypoint detections for an example scenario,
numbered in the order in which they appear in the output

Fig. 3. Visualization of numbered keypoint predictions, used to form edges
and estimate surface area of the cube face

array of keypoints. The keypoints are always labeled in a
cyclical manner, so that edges can be formed from successive
keypoints. Thus, in each scenario, the four edges are formed
from the following pairs: {0, 1}, {1, 2}, {2, 3}, and {0, 3}.

Given the surface areas of each of the faces of the cubes
in the workspace, the cubes are sorted in descending order
by face surface area. Cubes with larger face surface areas are
designated to be closer to the bottom of the stack.

VI. EXPERIMENTS

My experiments seek to answer the following questions:
1) How well does the keypoint predictor perform on test

data?
2) How well does the keypoint predictor estimate a block

stacking order based on face surface area?
Each experimental scenario contains five differently-colored

cubes, each with a side length between 0.02 to 0.05 units (this
dimension range seems to be the most reasonable given the
size of the robot’s gripper).

Table I shows the five categories of scenarios that are
evaluated in the experiments.

Scenario
Name

Cube Sizes

same-
small

All cubes are the same size with a 0.02 unit side length

same-
med

All cubes are the same size with a 0.035 unit side length

same-
large

All cubes are the same size with a 0.05 unit side length

diff-
small

All cubes are differently sized, where the range of sizes is
relatively small, between 0.02 and 0.035 units

diff-large All cubes are differently sized, where the range of sizes is
relatively large, between 0.02 and 0.05 units

TABLE I
DETAILS OF EXPERIMENTAL SCENARIOS

A. Keypoint Predictor Performance

To analyze the performance of the keypoint predictor, I
considered all five scenarios described in Table I.



To evaluate the effectiveness of keypoint detection on each
of these scenarios, the average Euclidean distance between
the corresponding ground truth and predicted keypoints is
computed over all keypoints in an image, where p̂x/p̂y are the
predicted keypoint coordinates and px/py are the ground-truth
keypoint coordinates:

Eavg =
∑√

(px−p̂x)2+(py−p̂y)2

Nkeypoints

Table II shows the average Euclidean distance error for the
keypoint detection scenarios tested.

Scenario Name Average Euclidean Distance Error
same-small 1.4929
same-med 1.6705
same-large 2.3626
diff-small 1.8386
diff-large 5.8307

TABLE II
AVERAGE EUCLIDEAN DISTANCE ERROR FOR KEYPOINT DETECTION

SCENARIOS FROM TABLE I

Fig. 4. Keypoint Predictions for same-small scenario

Figure 4 shows the keypoint predictions for the first scenario
referenced in Table II. The predictions are close to the ground
truth, as the predicted keypoints are close to the corners of
the top-facing cube faces. The predictions for the green cube,
however, seem to be slightly rotated. This may be due to the
influence of other cube rotations seen in this this scenario
(for example, the orange cube seems to be rotated in a similar
manner to how the keypoints for the green cube are predicted)
or the influence of green cube rotations in other scenarios.

Figure 5 shows the keypoint predictions for the second
scenario referenced in Table II. Similar to the same-small
scenario, the keypoint predictions are close to the ground truth.
However, as evidenced by Table II, the error for this scenario
is larger than that of the same-small scenario, and a visual
comparison corroborates this observation.

Figure 6 shows the keypoint predictions for the third sce-
nario listed in Table I. Compared to the same-small and same-
med scenarios, the keypoints are further from the ground truth.
The error for this scenario is the largest of the three scenarios
with all cubes of the same size. This may be because the

Fig. 5. Keypoint Predictions for same-med scenario

Fig. 6. Keypoint Predictions for same-large scenario

model did not see many cubes of this size during training and
hence has not developed strong generalization capabilities to
this cube size.

Fig. 7. Keypoint Predictions for diff-small scenario listed in Table I and
scenario 1 listed in Table III

Figure 7 shows the keypoint predictions for the fourth
scenario referenced in Table II. Compared to the prior sce-
narios, the predictions are further off from the ground truth.
I hypothesize that this implies that the model may need more



training on image observations with a larger variety in cube
sizes.

Fig. 8. Keypoint Predictions for diff-large scenario listed in Table I and
scenario 1 listed in Table IV

Figure 8 shows the keypoint predictions for the fifth sce-
nario referenced in Table II. Visually, the keypoint prediction
performance in this scenario is the worst of the five scenarios
presented, which is supported by the numerical error data.
A combination of the large range in cube sizes and the
presence of larger sized cubes, neither which may not have
been presented often during training, may be the reasoning
for this.

Overall, the keypoint detection model is able to identify
the desired keypoints reasonably accurately, as shown visually
and numerically. The main exceptions to this are keypoint
detections that appear on the midpoints of cube edges or are
slightly rotated in relation to the face corners (though the size
of the square formed seems visually similar to that of the
cube). This provides promising evidence that increasing the
amount and variety of scenarios in training can improve the
model’s performance.

B. Stacking Order Estimation Performance

To analyze the ability for the keypoint predictions to es-
timate a stacking order for the cubes based on face surface
area, I considered the scenarios from Table I that involve
differently sized blocks, which are diff-small and diff-large.
Both the edit distance, computed using the NLTK library 1,
between the ground truth and predicted sequences and the
average Euclidean distance error, which is computed in the
same manner as the errors in Table II, are reported for each
scenario.

Table III shows the comparison between the ground truth
and predicted stacking order for three variations of the diff-
small scenario. The edit distance between the ground truth and
predicted stack orderings increase as the average Euclidean
distance error increases. This is expected, since the accuracy of
the keypoint detection model will affect the quality of the cube
face surface area estimations and hence the estimated stacking

1https://www.nltk.org/

Scenario
Number

Pre-
dicted
Order

Ground-
Truth
Order

Edit
Dis-
tance

Average
Euclidean
Distance Error

1 Y, R, O,
B, G

Y, R, O, B,
G

0 1.8386

2 O, B, Y,
R, G

O, Y, B, G,
R

2 3.4117

3 O, B, G,
R, Y

R, G, B, O,
Y

3 5.2306

TABLE III
PREDICTED STACK ORDERING BASED ON SURFACE AREA FOR diff-small

SCENARIOS (R = RED CUBE, O = ORANGE CUBE, Y = YELLOW CUBE, G =
GREEN CUBE, B = BLUE CUBE)

Fig. 9. Keypoint Predictions for diff-small scenario 2 listed in Table III

Fig. 10. Keypoint Predictions for diff-small scenario 3 listed in Table III

order. Figures 7, 9, and 10 show the keypoint predictions for
scenarios 1, 2, and 3 in Table III respectively.

The predicted order for scenario 1 is correct. For scenario
2, both the yellow and blue and the red and green cube pairs
are swapped in the ordering. Visually, the red and the green
cube sizes are similar and the yellow and blue cube sizes are
similar, which may explain these ordering errors. A similar
reasoning as to why the blue and green cubes are swapped in
the predicted ordering for scenario 3 applies.

Table IV shows the comparison between the ground truth
and predicted stacking order for three variations of the diff-
large scenario. Interestingly, unlike the trend in the results



Scenario
Number

Pre-
dicted
Order

Ground-
Truth
Order

Edit
Dis-
tance

Average
Euclidean
Distance Error

1 G, O, R,
Y, B

G, O, R, Y,
B

0 5.8307

2 O, Y, R,
G, B

Y, O, R, G,
B

1 2.2881

3 G, B, O,
Y, R

G, Y, B, O,
R

2 1.8807

TABLE IV
PREDICTED STACK ORDERING BASED ON SURFACE AREA FOR diff-large

SCENARIOS (R = RED CUBE, O = ORANGE CUBE, Y = YELLOW CUBE, G =
GREEN CUBE, B = BLUE CUBE)

Fig. 11. Keypoint Predictions for diff-large scenario 2 listed in Table IV

Fig. 12. Keypoint Predictions for diff-large scenario 3 listed in Table IV

from Table III, the average Euclidean error decreases as the
edit distance increases. One possible explanation for this is
that cube edge distances are not accurately represented by the
detected keypoints, which affects the surface area estimations.
Figures 8, 11, and 12 show the keypoint predictions for
scenarios 1, 2, and 3 in Table IV respectively. Notably, a corner
of the yellow cube in Figure 12 is occluded which affects the
prediction of this keypoint.

The predicted order for scenario 1 is correct. For scenario
2, the yellow and orange cubes are swapped in the ordering.
Visually, the yellow and orange cube sizes are similar.

These results convey that utilizing keypoint predictions to

estimate cube face surface area provides inconsistent results.
The performance of surface area prediction is highly depen-
dent on the ability of keypoints to accurately estimate cube
dimensions. Further, the perspective of the image is important,
as this affects perceived cube sizes.

VII. FUTURE WORK

There are a variety of avenues for future work. The most di-
rect one would be to analyze ways to improve the performance
of the current keypoint model, or to investigate other model
architectures that may improve the performance of keypoint
detection. Regarding the first question, I hypothesize that a
wider number and variety of scenarios (i.e., scenarios with
larger variety of block sizes and rotations) will improve the
performance of the model.

Another area of future work would be to increase the variety
of block types, as done in the ShapeStacks paper. This would
require adding more classes/keypoint structures to the model
to support different 3D object face shapes (circles, triangles,
etc.).

Based on observations from the human perception system,
we tend to perceive object sizes differently based on how close
or far the object appears to be. Understanding how to more
accurately estimate properties of objects that are further away
would be an interesting point of future work.

Finally, to improve the sim-to-real transfer of this solution,
investigating the impact of noise (i.e., in image observations
and solutions to improve the robustness of the algorithm in
the presence of noise) would be useful.

VIII. CONCLUSION

This course project investigated utilizing a physical intuition
about stable block stacking to form a stack ordering of a given
set of cubes. To estimate this ordering, a keypoint detector
model is trained in order to identify the corners of a face of
each cube in the scene, then additional post-processing is done
to estimate the surface areas based on these keypoints and
determine an ordering based on this, where cubes with larger
face surface areas are designated to be lower on the block
stack. While the keypoint detection is reasonably accurate,
the estimation of cube face area that is extracted from these
detections is not a strong/consistent estimator of the true cube
face size. Further work is needed to understand how size can
more accurately be perceived from an image.

IX. RESOURCES UTILIZED

1) I used the Stack environemnt from the robosuite
GitHub repository https://github.com/ARISE-Initiative/
robosuite/blob/master/robosuite/environments/
manipulation/stack.py as a starting point for creating
my own environment

2) Computer Vision Annotation Tool (CVAT) to annotate
keypoint data

3) This script https://github.com/computervisioneng/
pose-detection-keypoints-estimation-yolov8/blob/main/
CVAT to cocoKeypoints.py as a starting point to

https://github.com/ARISE-Initiative/robosuite/blob/master/robosuite/environments/manipulation/stack.py
https://github.com/ARISE-Initiative/robosuite/blob/master/robosuite/environments/manipulation/stack.py
https://github.com/ARISE-Initiative/robosuite/blob/master/robosuite/environments/manipulation/stack.py
https://github.com/computervisioneng/pose-detection-keypoints-estimation-yolov8/blob/main/CVAT_to_cocoKeypoints.py
https://github.com/computervisioneng/pose-detection-keypoints-estimation-yolov8/blob/main/CVAT_to_cocoKeypoints.py
https://github.com/computervisioneng/pose-detection-keypoints-estimation-yolov8/blob/main/CVAT_to_cocoKeypoints.py


convert my annotations from CVAT to the format
needed by the keypoint detection model in YOLO. I
extended this script to take into account multiple object
classes and potentially multiple objects in a single
observation.
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