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1 INTRODUCTION
Multi Agent Path finding (𝑀𝐴𝑃𝐹 ) can be described as a planning
problem for multiple agents. Usually, the start and goal states are
defined for agents and they should try to reach the goal state with-
out collisions. MAPF can be applied to several areas and has broad
applications in industries like self-driving cars, autonomous strad-
dle carriers, warehouse robots, unmanned surface vehicles, office
robots and various other fields. It is known to be anNP hard problem
[17]. Approaches to MAPF can be categorized into reduction-based
[3, 14, 19], A*-based [5, 10, 13, 16], prioritized [2, 7] and dedicated
search-based algorithms [1, 4, 12]. The existing solvers of MAPF
assume agents as holonomic agents that move in cardinal direc-
tions and rotate in their place. They also neglect the agent size
and spatiotemporal constraints. This is in contrast to real-industry
robots that are usually non-holonomic, rectangular in shape and
have minimum turning radii. Consequently, these solvers cannot
accurately model real-world multi-agent scenarios with car-like
agents.

In [11] Licheng et al. give the problem definition for Car-Like
MAPF or CL-MAPF and introduce CL-CBS to solve the CL-MAPF
problem. The CL-MAPF problem definition is as follows:

For a workspace W ⊂ R3 and O𝑤𝑠 ⊂ W where O𝑤𝑠 represents
the set of obstacles that occupy a region [17]:

(1) The paths of N car like agents 𝑎1 ...𝑎𝑛 should begin at their
start state and end at their goal state in a finite number of
time steps.

(2) The agent remains at its goal position after reaching it.
(3) Agent should not collide with any obstacle or other agents

at any time step t.
(4) Ackermann steering agents should satisfy the kinematic

model. That is, the agents velocity v is bounded as 𝑣𝑏𝑚𝑎𝑥 ≤
𝑣 ≤ 𝑣 𝑓𝑚𝑎𝑥 where 𝑣𝑏𝑚𝑎𝑥 < 0 and represent the velocity
of moving backwards and 𝑣 𝑓𝑚𝑎𝑥 > 0 and represents the
velocity of moving forwards. Also, the agents maintain a
minimum turning radius 𝑟𝑚𝑖𝑛during the whole path [17].

Licheng et al. in [11] implement a novel two-level optimal solver
called Car-Like Conflict-Based Search(CL-CBS) that uses a binary
body conflict search tree and a spatiotemporal hybrid-state A*
method for low level planning that outperformed the base models
CBS-MPC [12] and the HA* solvers. The CL-CBS planner can be
broken down into two steps:

(1) Body Conflict Tree
(2) Spatiotemporal HA*

The authors also give a sequential CL-CBS solver to reduce the high
level search time.

As a note, we use the terms workspace and map interchangeably.

1.1 CL-CBS: Body Conflict Tree
The body conflict tree is a variant of the conflict tree used in the
original CBS paper [12]. Classical MAPF solvers use edge and ver-
tex conflicts for collisions between two agents and hence fail to
account for all collision scenarios. As CL-MAPF has a continuous
workspace, it uses a best first search on a binary body conflict tree
where each node contains a set of inter-agent constraints and the
solution satisfying these constraints. To expand the BCT, the leaf
node with minimum cost is popped and a collision check is done
for the solution that belongs to the node [11]. A body conflict can
be denoted using the tuple < 𝑎𝑖 , 𝑎 𝑗 ,𝐶

𝑖
𝑡 ,𝐶

𝑗
𝑡 , 𝑡 > where 𝑎𝑖 , 𝑎 𝑗 are the

two agents at timestep 𝑡 and 𝐶𝑖
𝑡 ,𝐶

𝑗
𝑡 is body rectangle for 𝑎𝑖 at 𝑡 .

For a body conflict, two nodes are produced with the constraints
< 𝑎𝑖 ,𝐶

𝑗
𝑡 , [𝑡 − 𝛿𝑇 , 𝑡 + 𝛿𝑇 ] > and < 𝑎 𝑗 ,𝐶

𝑖
𝑡 , [𝑡 − 𝛿𝑇 , 𝑡 + 𝛿𝑇 ] >. These

denote that the agent should not cross the rectangle area of the
other agent through the time step 𝑡 − 𝛿𝑇 to 𝑡 + 𝛿𝑇 . Spatiotemporal
HA* is performed for low-level path finding.

Figure 1 describes the pipeline for the BCT for CL-CBS.

Figure 1: Pipeline of CL-CBS for multiple agents with their
start and goal states represented as solid colored and dotted
outline rectangles, respectively. [17]

1.2 CL-CBS: Spatiotemporal HA*
Hybrid A*, or 𝐻𝐴∗, does not consider spatiotemporal constraints
when applied to a continuous 3D state space for car like agents.
Licheng et al in [17] introduce spatiotemporal 𝐻𝐴∗ that can plan
paths that satisfy the kinematic constraints and spatiotemporal
inter-agent constraints. Spatiotemporal 𝐻𝐴∗ is able to do so as it
uses a 4D search space (𝑡, 𝑥,𝑦, 𝜃 ) where 𝑥,𝑦, 𝜃 ∈ 𝑅 and t is discrete.
The authors used seven different steering actions to expand each
node using 𝐻𝐴∗. The heuristic also considered turning actions,
driving backward and switching the moving direction.

1.3 Sequential CL-CBS
As more nodes are expanded in high level search when there are
multiple agents in an area during a time step, sequential CL-CBS can
be used to reduce the high level search time. In sequential CL-CBS,
the agents are divided into batches, and each batch is sequentially
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solved as a sub-CL-MAPF. The results are later combined for the
paths calculated. The paths planned out in earlier batches act as
dynamic obstacles as they are added to the constraint in the root
node of BCT. This method however, comprises the completeness of
CL-CBS as discussed in Section 8.

2 CHALLENGES OF CL-MAPF
In addition to computing cost-effective paths for individual agents
within a given space, an algorithm that simultaneously plans for
multiple agents will need to account for not only static obstacles
but also dynamic obstacles imposed by the other known agents in
the workspace. This entails finding intelligent ways to detect and
avoid future collisions between one or more agents, which is both
an interesting and challenging problem. Accounting for agents’
kinematic constraints in planning adds additional complexity and
improves the algorithm’s applicability to real-world multi-agent
path finding scenarios. Such scenarios may include interaction of
multiple autonomous cars and navigating multiple agents through
crowds.

3 RELATEDWORK AND LIMITATIONS OF
PREVIOUS APPROACHES

3.1 Categories of MAPF Solutions
As described in [15], reduction-based MAPF methods [3, 14, 19]
aim to reduce MAPF to another problem. Reduction-based meth-
ods are effective for small and dense graphs are not as effective
as the graph size grows. Švancara et al. [15] attempt to address
this using graph pruning. Though utilizing graph pruning reduces
computational time, completeness and/or optimality is sacrificed.
Other reduction-based methods, including [3, 14], utilize heuris-
tics/constraint relaxation to improve solution efficiency/quality for
larger problems, but this can sacrifice optimality of solutions. Fur-
ther, as variables such as the number of agents or map size grow
larger, the number of parameters needed to accurately formulate
and constrain the reduced problem can increase greatly.

A*-based methods [5, 10, 13, 16] utilize variants of A*. When
paired with an admissible heuristic, A* search will find an opti-
mal solution. However, the branching factor of A* search can grow
rapidly, especially for large graphs. Wagner and Choset [16] intro-
duces subdimensional expansion, which can be used to reduce search
complexity and search space size of a multi-robot path planning
(MPP) problem. [13] uses operator decomposition (OD) to reduce the
branching factor of A* when used for solving the MAPF problem.
However, a tradeoff of this is that the depth of the solution will
increase. The most recent algorithm within this category cited by
[17], ODrM* [5], utilizes a combination of OD, a recursive version
of M* (rM*) and conflict-based search (CBS) to reduce the size of the
search space as much as possible, only increasing the dimensional-
ity of the search space when needed for collision resolution. Finally,
Phillips and Likhachev [10] introduce Safe-Interval Path Planning
(SIPP), which reduces the state space by introducing safe intervals,
an interval of time for which a configuration is not involved in a
collision. By using safe intervals, the state space is reduced to a few
states per configuration (one for each of its safe intervals) instead
of several states per configuration (one for each timestep in which
a configuration is collision-free).

As explained in [2], prioritized MAPF methods assign a unique
priority to each agent, and planning is done sequentially from high-
est to lowest priority agent such that lower-priority agents must
avoid higher-priority agents. This algorithm is incomplete, as it
is possible that valid solutions can be invalidated by ignorance of
tasks of lower priority robots (that should occur before tasks of
higher priority robots in order to ensure a valid solution) when
planning for higher priority robots. The incompleteness of classical
prioritized planning is further discussed in [2]. A revised prioritized
planning algorithm introduced in [2]. However, a notable limitation
of this approach is that a few assumptions about the agent’s move-
ments that are necessary for the algorithm to succeed in finding
a solution are made. Further, a path satisfying these assumptions
may not exist and this algorithm is still incomplete.

Dedicated search-basedMAPFmethods utilize search-based plan-
ning methods (that are not necessarily based on A*) to solve the
MAPF problem. One such method, ICBS [1], improves on conflict-
based search (CBS). CBS itself is a popular algorithm used in MAPF,
implying its effectiveness in solving this problem.

3.2 Conflict-Based Search
The high-level planner utilized in CL-CBS is based on the high-level
planner presented in conflict-based search. As such, an explanation
of conflict-based search is presented here.

As described in Section 3.1, CBS is search-based planner. Many
MAPF algorithms are based on A*. As mentioned in Section 3.1, the
branching factor of A* is quite large. Additionally, as mentioned
in the CBS paper, the size of the state space is exponential in the
number of agents. Thus, an A*-based solution to the MAPF problem
may be too time or space inefficient. To address these inefficiencies,
CBS divides MAPF into single-agent path finding problems, where
the solution to each is constrained based on the paths of other
agents.

CBS consists of a high and low-level planner. The high-level
planner utilizes a conflict tree (CT). As described in [12], each node
in the conflict tree consists of:

• A set of constraints, where a single constraint is defined as a
tuple (𝑎𝑖 , 𝑣, 𝑡) implying that agent 𝑎𝑖 cannot be at vertex 𝑣
at time 𝑡

• A solution, a set of paths consisting of one path per agent,
which satisfies the node’s constraints

• The total cost of the node’s solution (the sum of all single-
agent path costs)

The high-level planner performs a best-first search on the conflict
tree based on node costs. Each node found by this search is passed
to the low-level planner, which finds a set of shortest paths for all
agents that satisfy the constraints of this node. This solution is then
validated. If validation succeeds, the search stops and the current
node is declared to be the goal (conflict-free) node. Otherwise, the
node is a non-goal node and conflicts must be resolved.

Formally, a conflict is a tuple (𝑎𝑖 , 𝑎 𝑗 , 𝑣, 𝑡), which implies that
both agents 𝑎𝑖 and 𝑎 𝑗 occupy vertex 𝑣 at time 𝑡 . To resolve this
conflict, the current node is split into two children. To account for
all possible solutions, one child node will contain constraint (𝑎𝑖 , 𝑣, 𝑡)
and the other will contain constraint (𝑎 𝑗 , 𝑣, 𝑡). In the case that a
conflict is between more than two agents, the conflict between two
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agents is resolved at the current level and the conflict between the
rest of the agents is delayed to later levels.

3.3 MAPF Solutions Accounting for Kinematic
Constraints

In the context of the CL-MAPF paper, an important limitation of
the planning methods presented in Sections 3.1 and 3.2 is that they
ignore robots’ kinematic constraints. MAPF methods cited by the
CL-MAPF paper that consider kinematic constraints [6, 8, 9, 18] do
not address them to the extent that [17] does. However, the ideas
presented in these works could possibly be improved on using ideas
from CL-MAPF.

3.4 Limitations of Previous Solutions
In addition to ignoring kinematic constraints when planning, [17]
emphasizes that the main limitations of many previous MAPF meth-
ods are that they assume that agents represent disks that can rotate
in place and/or only consider discrete 4-connected grids as their
state space. Classic MAPF solvers use vertex conflicts and edge
conflicts which lead to coarser solutions that do not account for
all cases of agents colliding, limiting the real-world applicability of
these plans. Further, several of the real-world scenarios that MAPF
is applicable to utilize nonholonomic, car-like robots. The objective
of the CL-MAPF paper is to address these limitations and define
the MAPF problem for car-like robots.

4 REPLICATION STUDY
Given that the authors’ solver outperformed previous solvers for
CL-MAPF and the vast literature and research that is ongoing and
has been done on MAPF, we seek to pursue a replication study for
the paper [17].

Our objective for this replication study is two-fold. Firstly, we
verify the results presented in the paper by running the experiments
presented in the paper ourselves. Further, we intend to compare
one of the baselines used, HA*, to CL-CBS in a similar manner
to the comparisons done in [17]. We implemented HA* for this
purpose. Secondly, we expand on the original paper’s findings by
designing and running new experiments for CL-CBS. The new
experiments are designed to discover limitations of CL-CBS.Wewill
vary parameters including map size, number of agents, and obstacle
radii. The full set of experiments will be described in Section 6.

5 REPLICATED RESULTS
The authors of [17] included a benchmark dataset along with their
code implementing the CL-CBS algorithm. The benchmark contains
examples consisting of various size workspaces (50x50, 100x100,
and 300x300) with varying number of agents and (static) obstacles.

Table 1 shows the replicated results of Table 1 from the original
paper [17]. The authors did not specify the exact data/examples
from the benchmark they used when gathering the results displayed
in the paper. Thus, averaged metrics of three examples from the
benchmark per combination of map size/number of agents/number
of obstacles are shown. These makespans are within 20 m of the
values reported in [17].

Figures 2 through 5 show multi-agent plans for example sce-
narios with a variety of workspace sizes, number of agents, and

Table 1: Replicated Results

Map Size/Number
of Agents/Number
of Obstacles

Average Makespan
Without Obstacles
(m)

Average Makespan
With Obstacles (m)

50x50/20/25 37.1906 42.7193
100x100/30/50 63.1697 59.8835
300x300/50/100 161.7723 162.6503

number of obstacles. These figures show the state of the workspace
at the end of the simulation (i.e., when all agents have reached
their goal positions). The lines trailing the agents show their paths.
These figures will serve as baselines for the results in Section 7.

Figure 2: 100x100 map, 30 agents, no obstacles example plan

Figure 3: 300x300 map, 50 agents, no obstacles example plan
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Figure 4: 50x50 map, 20 agents, no obstacles example plan

Figure 5: 50x50 map, 20 agents, 25 obstacles example plan

5.1 HA*
Licheng et al. in [17] do not discuss the heuristic implementation
of 𝐻𝐴∗ or CBS-MPC against which they tested CL-CBS. However,
the authors provided the implementation of spatiotemporal 𝐻𝐴∗.
By ignoring the temporal constraints and only considering spatial
constraints, and using eucledian distance between current state and
goal state, we were able to implement 𝐻𝐴∗ and run in scenarios
without obstacles. The search algorithm used the heuritis estimate
to expand the states. The state with lowest f-score is expanded
first, where , the f-score is an estimate of the total cost of the path
through the current state to the goal state. For more than 30 agents,
𝐻𝐴∗ was not able to solve more than 10 percent of the instances in
100x100 mapset.

We evaluated the runtime for agents between 5 to 30 for 100x100
mapset without obstacles.𝐻𝐴∗ did not run on more than 90 percent
of the instances for 100x100 mapset.

Figure 6: Runtime for scenarios with varying numbers of
agents in a 100x100 workspace without obstacles

6 NEW EXPERIMENTS
In order to gain a deeper understanding of the limitations of the
CL-CBS planner, we have designed a series of experiments to test
its performance in various challenging scenarios. These scenarios
include varying map sizes, numbers of agents, Euclidean distances
between start and goal states, and obstacle configurations. By sub-
jecting the planner to these diverse scenarios, we aim to identify
the strengths and weaknesses of the planner. Our experimentation
aims to provide valuable insights into the performance of the CL-
CBS planner specifically for non-holonomic agents with Ackerman
steering geometry as the kinetic model in scenarios that may or
may not have obstacles.

6.1 Data Generation
The input and output to the CL-CBS algorithm are stored in YAML
files with a well-defined format. This greatly facilitated the process
of running additional experiments.

We generated the data for the new experiments by treating the
workspace as a grid, with each cell, a square, holding an agent (or
obstacle in some cases). We calculated the number of rows and
columns in this grid is calculated as follows:

(1) 𝑚𝑎𝑝_𝑎𝑟𝑒𝑎 =𝑚𝑎𝑝_𝑤𝑖𝑑𝑡ℎ2

(2) 𝑐𝑒𝑙𝑙_𝑤𝑖𝑑𝑡ℎ = ⌊
√︃

𝑚𝑎𝑝_𝑎𝑟𝑒𝑎
𝑛𝑢𝑚_𝑎𝑔𝑒𝑛𝑡𝑠 ⌋

(3) 𝑛𝑢𝑚_𝑟𝑜𝑤𝑠 = 𝑛𝑢𝑚_𝑐𝑜𝑙𝑠 = ⌊𝑚𝑎𝑝_𝑤𝑖𝑑𝑡ℎ

𝑐𝑒𝑙𝑙_𝑤𝑖𝑑𝑡ℎ
⌋

The number of rows and columns are sufficient to fit one agent
per cell for all experiments. For the experiment placing two large
obstacles in the middle of the map, the obstacles are treated as
(static) agents and thus occupy a cell of their own throughout the
entirety of the experiment.

6.2 New Experiment Details
In the CL-MAPF paper [17], the authors discuss a set of constraints
for which each example in their benchmark dataset follow. Of the
constraints discussed, the following were most intriguing:

• the Euclidean distance between start and goal state of an
agent is greater than 1/4 of the map width

• examples with obstacles contain circle obstacles with a 0.8
m radius and the entire obstacle region occupies 1% of the
map area

In addition to creating experiments that varied map size and
agent numbers, we created new experiments that varied these con-
straints to gain insight about the importance of these constraints
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Table 2: New Experiments

Purpose Details
Vary map size Examples with a

200x200 map with
and without obsta-
cles containing 20,
25, 30, 40 and 50
agents

Vary number of
agents within 50x50
map

Examples without
obstacles containing
30, 40, and 50 agents

Vary number of
agents within
100x100 map

Examples without
obstacles containing
60, 70, and 80 agents

Vary Euclidean dis-
tance from start to
goal

1. 50x50 map, no
obstacles, 20 agents,
start-goal distance
1/2 of map width

2. 100x100 map,
no obstacles, 30
agents, start-goal
distance 1/10
of map width

3. 300x300 map,
no obstacles, 50
agents, start-goal
distance 1/8 of map
width

Vary size and num-
ber of obstacles

100x100 map with 40
agents and 2 7m ra-
dius obstacles inmid-
dle of the map

Vary size of obstacle
region

50x50 map contain-
ing 20 agents with 75
0.8 m radius obsta-
cles, obstacle region
occupies 6% of map

to the success/failure of a solution being found. Table 2 shows the
additional experiments created. Their results will be discussed in
the following section.

7 RESULTS
7.1 CL-CBS
For each figure referenced that contains numeric labels, the starting
positions are labeled with the corresponding agent number within
the solid rectangles, and the goal positions are labeled with the
corresponding agent numbers to the right of the dashed bordered
rectangles (if no dashed rectangle is immediately visible, this is
because a different agent’s starting position overlaps). In these
scenarios, the agents start to goal paths form a "snake" like pattern
from bottom left to top right.

For each scenario, a time limit of 2 minutes per iteration for the
scenarios is set. One iteration comprises of searching through the
body conflict tree for the next best node, then performing low-level
searches for each agent to find its individually optimal path, and
finally validating all of these paths among each other to determine
whether or not any of the agents’ paths conflict. This is a constraint
set by the authors in [17].

If a figure visualizing the output of CL-CBS does not contain
paths (i.e., trails behind agents), it implies that a plan was not found
for the given scenario under the time constraint.

Figure 7: Makespan for scenarios with varying numbers of
agents in a 200x200 workspace with obstacles

Figure 8: Runtime for scenarios with varying numbers of
agents in a 200x200 workspace with obstacles

7.1.1 Varying Workspace Size. Figures 7 through 10 show the
makespan and runtimes (defined in [17]) for planning scenarios
with varying numbers of agents in a 200x200 workspaces without
obstacles. CL-CBS is able to find a solution for all the scenarios
tested. As expected, the makespan generally increases as the num-
ber of agents in the workspace increases, as an increased number
of agents will require more frequent collision avoidance, increasing
the makespan. There does not seem to be a discernible trend in the
runtimes of these scenarios.

7.1.2 Varying Number of Agents. Figures 11 through 13 show
visualizations of the paths and/or start and goal positions for each
agent in a 100x100 workspace. CL-CBS successfully finds a plan for
the scenario in Figure 11 but fails to find a solution within the time
constraints for the scenarios in Figures 12 and 13. As the number
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Figure 9: Makespan for scenarios with varying numbers of
agents in a 200x200 workspace without obstacles

Figure 10: Runtime for scenarios with varying numbers of
agents in a 200x200 workspace without obstacles

Figure 11: Visualization of paths taken for each of 60 agents
in an obstacle-free 100x100 workspace

of agents in the workspace increases, the amount of empty space
decreases. This implies that the agents have less room to navigate
around other agents, increasing the number of conflicts. CL-CBS
resolves conflicts by adding more nodes to the body conflict tree,
which leads to further low-level searches to find single-agent paths

Figure 12: Visualization of start and goal positions for each
of 70 agents in an obstacle-free 100x100 workspace

Figure 13: Visualization of start and goal positions for each
of 80 agents in an obstacle-free 100x100 workspace

for each agent which must then be validated together to check for
further conflicts. Thus, an increase in conflicts will significantly
increase the runtime of the algorithm.

Figures 14 through 16 show visualizations of the paths and/or
start and goal positions for each agent in a 50x50 workspace. CL-
CBS is unable to find solutions for each of these scenarios within the
time constraints. The reason for this is similar to the reasoningmade
for the scenarios in Figures 11 through 13. For a 50x50 workspace,
the amount of empty space is even more constrained. Additionally,
each agent takes up a larger proportion of the workspace’s area
compared to that in a 100x100 workspace.
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Figure 14: Visualization of start and goal positions for each
of 30 agents in an obstacle-free 50x50 workspace

Figure 15: Visualization of start and goal positions for each
of 40 agents in an obstacle-free 50x50 workspace

7.1.3 Varying Distance From Start To Goal. The following
scenarios investigate the effect of varying the Euclidean distance
from agent start to goal condition specified in [17]. The agent’s
goal positions are determined by determining the number of "cell
widths", using the definition of cell from Section 6.1, that must
separate the start and goal positions of a given agent. For example, if
the separation between the start and goal positions of an agent must
be 1/2 of the workspace width, then the goal position is computed
by advancing the agent’s position by at least the number of cells
corresponding to the distance that comprises 1/2 of the workspace
width. As the agent’s start positions are placed in a snake-like
pattern (from least to greatest agent number), the goal positions
are placed in this pattern as well.

Figures 17 and 18 visualize the states of a 50x50 workspace with
20 agents. The Euclidean distance between the start and goal in

Figure 16: Visualization of start and goal positions for each
of 50 agents in an obstacle-free 50x50 workspace

Figure 17: Visualization of paths taken for each of 20 agents
in an obstacle-free 50x50 workspace, where the Euclidean
distance from the start to the goal for each agent is larger
than 1/2 map width

Figure 17 is 1/2 of the workspace width (i.e., 25 m for a 50x50
workspace), and 1/4 of the workspace width (the baseline Euclidean
distance used in the benchmark in [17]).

Visually, the difference in start to goal separation is shown by
the difference number of "cells" that each agent travels between. In
Figure 17, each agent’s path spans three cells. For example, agent
4 travels from the top cell in the first column from the left to the
third cell from the bottom in the second column from the left (this
is shown by the trail behind agent 4). On the other hand, in Figure
18, each agent’s path spans two cells. For example, agent 4 starts at
the same position as in the scenario in Figure 17, but only travels
to the second cell from the bottom in the second column from the
left.



CS 395T Project Report, Apr 2023, Austin, Texas USA Geethika Hemkumar, EID: gh22885 and Avani Agarwal, EID: aa88539

Figure 18: Visualization of start and goal positions for each
of 50 agents in an obstacle-free 50x50 workspace, where the
Euclidean distance from the start to the goal for each agent
is larger than 1/4 map width

In this scenario, the difference in separation makes a difference in
whether or not a plan can be found for the given input set of agent
start and goal positions, as a plan can be found for the scenario in
Figure 17 but not in the given time constraints for the scenario in
Figure 18. A larger Euclidean distance from the start to the goal
implies that the agents have more freedom in choosing their path,
and can thus more easily avoid collisions with other agents.

Figure 19: Visualization of paths taken for each of 30 agents
in an obstacle-free 100x100 workspace, where the Euclidean
distance from the start to the goal for each agent is larger
than 1/10 map width

Figures 19 and 20 visualize the states scenarios in a 100x100
workspace with 30 agents.

The Euclidean distance between the start and goal in Figure 19
is 1/10 of the workspace width (i.e., 10 m for a 100x100 workspace),

Figure 20: Visualization of paths taken for each of 30 agents
in an obstacle-free 100x100 workspace, where the Euclidean
distance from the start to the goal for each agent is larger
than 1/4 map width

and 1/4 of the workspace width in Figure 20 (the baseline Euclidean
distance used in the benchmark in [17]).

As discussed in the similar previous set of scenarios with the
50x50 workspace, the difference in start to goal separation is shown
by the difference number of "cells" that each agent travels between.
In Figure 19, each agent’s path spans one cell. On the other hand,
in Figure 20, as in the scenario with the same distance separation
between start and goal positions with the 50x50 workspace, each
agent’s path spans two cells.

CL-CBS is able to find a plan for both of these scenarios. The
spacing between agents in the 100x100 workspace, and the distance
between the start and goal for all agents seems to be sufficient
compared to the 50x50 scenarios.

Figures 21 and 22 visualize the states scenarios in a 300x300
workspace with 50 agents.

The Euclidean distance between the start and goal in Figure 21
is 1/8 of the workspace width (i.e., 37.5 m for a 300x300 workspace),
and 1/4 of the workspace width in Figure 22 (the baseline Euclidean
distance used in the benchmark in [17]).

As discussed in the similar previous two sets of scenarios with
the 50x50 and 100x100 workspaces, the difference in start to goal
separation is shown by the difference number of "cells" that each
agent travels between. In Figure 21, each agent’s path spans one
cell. On the other hand, in Figure 22, as in the scenario with the
same distance separation between start and goal positions with the
50x50 workspace, each agent’s path spans two cells.

In this scenario, as with the 50x50 workspace scenarios, differ-
ence in separation makes a difference in whether or not a plan can
be found for the given input set of agent start and goal positions, as
a plan can be found for the scenario in Figure 22 but not in the given
time constraints for the scenario in Figure 21. Similar reasoning to
previous scenarios in this section can be applied.
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Figure 21: Visualization of start and goal positions for each
of 50 agents in an obstacle-free 300x300 workspace, where
the Euclidean distance from the start to the goal for each
agent is larger than 1/8 map width

Figure 22: Visualization of paths taken for each of 50 agents
in an obstacle-free 300x300 workspace, where the Euclidean
distance from the start to the goal for each agent is larger
than 1/4 map width

7.1.4 Varying Obstacle Size and Number. The following sce-
narios investigate the effect of varying (static) obstacle size and
number. As mentioned in [17], each obstacle in the benchmark
dataset has a default radius of 0.8 m and the obstacle area comprises
1% of the total workspace area.

Figures 23 through 25 visualize the results of applying CL-CBS
to scenarios in a 100x100 workspace with 40 agents and varying
numbers and size of the obstacle. In Figure 23, two large (7 m
radius) obstacles are placed in the middle of the workspace. A plan
is unable to be found within the given time constraints. In Figure
24, 36 obstacles are placed evenly throughout the workspace. A

plan is found for this scenario. Finally, as a baseline comparison, 50
obstacles are placed in a seemingly random manner in Figure 25.
A plan is unable to be found in the given time constraints for this
scenario as well.

These results indicate that the size and location of obstacles
affects the planning process. A dense obstacle region with two
large obstacles (radius 7 m) in the middle of the workspace hinders
planning to a greater extent than a workspace with fifty of smaller
obstacles (radius 0.8 m) scattered around. The former scenario times
out on the second iteration, whereas the latter scenario times out on
the fourth. The obstacle area in the former scenario is 98𝜋 and the
obstacle area in the latter scenario is 32𝜋 . Even though the obstacle
region in the former scenario is larger compared to the obstacle
region in the latter scenario, the results seem surprising. A densely
packed region of obstacles in the middle provides greater free space
towards the edges of the workspace compared to a scattered region.
Further, the agents may have been able to maneuver in a circular
pattern around the center obstacles (much like a traffic circle), but
cannot necessarily do so with the scenario with scattered obstacles.

Figure 23: Visualization of start and goal positions for each of
40 agents in a 100x100 workspace with two large (7 m radius)
obstacles in center of workspace

Figures 26 through 28 visualize the results of applying CL-CBS to
scenarios in a 50x50 workspace with 20 agents and varying numbers
of obstacles. In Figure 27, obstacles take up 6% of the workspace. A
plan is able to be found for this scenario. In Figure 28, 16 obstacles
are placed evenly throughout the 50x50 workspace. A plan is unable
to be found for this scenario within the time constraints. Finally,
Figure 5 is used as a baseline comparison, which visualizes a 50x50
workspace with 25 obstacles placed in a random pattern. A plan is
able to be found for this scenario.

Interestingly, a solution is unable to be found for the scenario
with the smallest number of obstacles among the three recently
discussed. The structure of the obstacle region may explain this
behavior. In Figure 5, there is no noticeable structure to the obstacles
and thus the agents are not restrained in a particular way. On the
other hand, the obstacles form a lattice-like pattern in Figures 26
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Figure 24: Visualization of paths taken for each of 40 agents
in a 100x100 workspace with 36 obstacles of radius 0.8 m

Figure 25: Visualization of start and goal positions for each of
40 agents in a 100x100 workspace with 50 obstacles of radius
0.8 m (baseline from original benchmark set created by Wen
et al. [17]

and 28. Further, the agents in the latter scenario are more "boxed
in" compared to the agents in the former scenario.

8 LIMITATIONS OF CL-CBS
(1) Sequential CL-CBS compromises the completeness of the al-

gorithm. As shown in Figure 29. The blue agent cannot reach
its goal because the gray agent that was planned previously
is parked between the obstacles.

(2) As authors expanded from discrete to a continuousworkspace
Spatiotemporal Hybrid 𝐴∗ has scalability issues for increase
in obstacles or increase in workspace area.

Figure 26: Visualization of start and goal positions for each
of 20 agents in a 50x50 workspace with 75 obstacles of radius
0.8 m (6% of workspace area)

Figure 27: Visualization of paths taken for each of 40 agents
in a 100x100 workspace with 75 obstacles of radius 0.8 m (6%
of workspace area)

(3) Licheng et al. in [17] do not discuss the heuristic or imple-
mentation of 𝐻𝐴∗ or CBS-MPC against which they tested
CL-CBS.

(4) Through our experimentation, we found that the success ra-
tio of the CL-CBS planner decreases for map sizes of 100x100
with more than 70 agents. This indicates a limitation of the
planner for larger multi-agent scenarios and highlights the
need for further improvements to enhance its scalability.

(5) During our experimentation, we observed that when the
size of the obstacles was increased in a 100x100 map with
40 agents, as shown in Figure 23, the CL-CBS planner was
unable to generate collision-free paths for the agents. This
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Figure 28: Visualization of start and goal positions for each
of 40 agents in a 50x50 workspace with 16 obstacles of radius
0.8 m

Figure 29: Sequential CL-CBS: A fail case [17]

highlights the limitations of the planner in dealing with com-
plex or big obstacle configurations and emphasizes the need
for developing new techniques to overcome these challenges.

Another limitation of CL-CBS is its behavior when planning for
agents moving in a non-random pattern, as explored in Section
7. Though CL-CBS is able to plan for some such scenarios, the
algorithm fails in others given the time constraints due to a seeming
lack of maneuverability. Based on the example scenarios we tested
from the benchmark, the agents seem to be placed in a random
manner.

Additionally, the size, placement, and density of obstacles seems
to noticeably impact planning, which is expected. The exact rela-
tionship between these factors and the ability for a solution to be
found is not clear.

9 FUTUREWORK AND CONCLUSION
(1) Test CL-CBS with scenarios designed to follow real-world

traffic patterns, such as automobile traffic, traffic in ware-
houses, or traffic in offices (which likely will involve interac-
tion between robots and humans)

(2) Better understand the impact of the size, placement, and
density of obstacles on planning.

(3) Vary time constraints placed on the runtime of the algorithm
on scenarios based on perceived planning difficulty

(4) As we can see from sequential CL-CBS fail case, one direction
of future work can be allowing agents to move after they
reach the goal to allow other agents to reach their goal

(5) Extend CL-CBS to non-holonomic and holonomic agents.
(6) Evaluate CL-CBS using makespan and sum of costs under

the scenario where each agent must maintain a speed.
(7) Try to extend CL-CBS to Target Assignment and Path Find-

ing, wherein we must have optimal assignment of multiple
agents to a set of targets, and the agents should follow the
best path to reach their respective target.
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