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Motivation

e Hydration is important to overall well-being
e Easy to forget to hydrate throughout the day
e Hydration reminders are useful to ensure that people are drinking enough

water, especially during/after:

o Working in extreme temperatures for a long period of time

o Vigorous physical activity for a long period of time



Prior Work - Academic

e AutoHydrate: mobile application connected to a wearable throat microphone
to track hydration and a watch to track physical activity

e Utilizing physiological signals to estimate hydration levels:

o Classifying hydration level based on PPG signals from videos of a person’s fingertip

o Classifying volume depletion/dehydration based on ECG signals

e Detecting drinking gestures from smartwatch



Prior Work: Commercial

HidrateSpark water bottle



Project Scope

e iOS application to track hydration and physical activity
e Goal: remind users to drink water periodically based on a variety of factors,

including:

o Intensity of physical activity
o Ambient temperature

o Time since last hydration event

e Hydration tracking: drinking gesture detection using inertial data

e Physical activity tracking: activity recognition using inertial data



Implementation - Hardware

Arduino Nano

iPhone with
custom iOS app




Implementation - Activity Recognition Model

e [our-class classification between: resting, walking, climbing stairs, and running

e Collected accelerometer and gyroscope data from 8 participants while they
performed some or all of these activities

e [eatures extracted (per frame): mean, variance, energy, RMS from each axis of

accelerometer data



Activity Recognition Model - Results
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Implementation - Gesture Recognition Model: Strategy 1

e Binary classification between drinking and non-drinking gestures
e Collected accelerometer and gyroscope data from 7 participants
e F[eatures extracted (per frame): mean, variance, energy, RMS from each axis of

accelerometer data

Dataset 1: Participant 0 Drinking Gesture Accelerometer Data Dataset 1: Participant 0 Drinking Gesture Gyroscope Data
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Strategy 1 Results
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Implementation - Gesture Recognition Model: Strategy 2

Four class classification between playing piano, typing, drinking, and resting
gestures

Collected accelerometer and gyroscope data from 5 participants

Features extracted (per frame): mean, variance, energy, RMS from each axis

of accelerometer data

Dataset 2: Participant 0 Piano Gesture Accelerometer Data Dataset 2: Participant 3 Drinking Gesture Accelerometer Data Datpset 2: Particlpont 3 Drinking|Gestiire Gyroscops Data
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Strategy 2 Results
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Key Takeaways

e Multi-class drinking gesture recognition model performs better than that of the
binary-class model
e Key learning: exposure to the entire process of data collection, preprocessing,

feature engineering, and model training



Future Directions

e Tracking volume of water consumed
e Training activity/drinking gesture recognition models on more relevant data
classes

e In-the-wild testing of app



Thank You!




References

e Mengistu, Yehenew, et al. "AutoHydrate: A wearable hydration monitoring system." 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2016.

e  Kaveh, Anthony, and Wayne Chung. "Classification of hydration status using electrocardiogram and machine learning." AIP
Conference Proceedings. Vol. 1559. No. 1. American Institute of Physics, 2013.

e  Alaslani, Rose, et al. "You can monitor your hydration level using your smartphone camera." arXiv preprint arXiv:2402.07467
(2024).

e  HidrateSpark water bottle: https://hidratespark.com/pages/why-hidrate-spark-works

e Amft, Oliver, et al. "Towards wearable sensing-based assessment of fluid intake." 2010 8th IEEE International Conference on
Pervasive Computing and Communications Workshops (PERCOM Workshops). IEEE, 2010.



https://hidratespark.com/pages/why-hidrate-spark-works

